钢管桩可以重复利用吗_钢管桩可以重复利用吗为什么

文章来源:https://www.dhgcn.com 发布时间:2024-04-19 14:55:57 浏览次数:1

钢管桩可以重复利用吗_钢管桩可以重复利用吗为什么

大家好,今天我来为大家详细地一下关于钢管桩可以重复利用吗的问题。我对这个问题的总结和归纳,希望能对大家有所帮助。

文章目录列表:

1.钢管桩以以及预应力锚索在路基挡土墙加固中的应用?
2.如何用钢管桩进行施工?
3.钢管桩和贝雷梁组合支架在跨河现浇梁施工中的应用?

钢管桩可以重复利用吗_钢管桩可以重复利用吗为什么

钢管桩以以及预应力锚索在路基挡土墙加固中的应用?

下面是中达咨询给大家带来关于钢管桩以以及预应力锚索在路基挡土墙加固中的应用,以供参考。

213国道紫坪铺库区淹没段改建工程龙池公路是一条山岭重丘区三级公路,全长5.028KM,路基宽7.5M.整条线路设计标高889.72~1042m,山势陡峻,纵坡3~8%,横向岸坡坡度250~350,地表覆盖层为崩坡积(Qcol+dl)块碎石土,厚度约3~10m,该路段普遍存在开挖边坡以以及高路基挡墙的稳定性问题。K3+690~K3+737段地形陡峻,路基左侧采用C15砼衡重式路肩挡土墙(H=12~15m)支护,2005年9~10月,由于连降大雨,基脚出现较为严重的坍滑现象,外侧山体出现1~1.5m的下沉,同时伴有地下水溢出,进一步可能造成路肩高挡土墙失稳而导致整段路基坍塌,交通中断,甚至发生严重的安全事故,急需进行治理。经过对社会以以及经济效益分析,决定采用锚索加固挡墙和钢管抗滑桩加固路基防止土体滑移相结合的方案。

1、工程地质以以及加固方案

沿锚索孔穿越方向,地质情况依次为:C15砼挡土墙、路基堆填石块、块碎石土、灰岩;沿钢管桩垂直向下方向,地质情况依次为:堆积土、块碎石土、灰岩。

1.2加固方案

先期实施钢管抗滑桩加固路基,后再实施锚索部分。

①¢146钢管桩沿挡墙左侧5m顺公路轴线方向按1.2m1.2m三排呈梅花布置,每排42根。对桩周围土灌浆处理(灌注M20水泥砂浆,水灰比0.5,压力选用0.3MPAa,灌浆管布置间距2m2m)。¢146钢管桩内加入三根HRB335d28钢筋并灌注M30水泥砂浆,钢管桩顶部用槽钢连接,然后浇筑C20砼承台;

②锚索沿线路方向按44m间距呈梅花布置,上排13根锚索,下排12根锚索,锚索孔深度为20m,锚固段长度为8m,自由段为12m,锚固段地层为弱风化灰岩。锚索采用7¢15.2低松弛高强度钢绞线(Rb=1860Mpa),每根锚索设计的抗拔力为1200KN.

2、施工工艺

钢管桩与锚索施工工艺基本一样,关键点都在于采用偏心跟管钻进技术。

更多关于工程/服务/采购类的标书代写,提升中标率,您可以点击底部官网免费咨询:/#/?source=bdzd

如何用钢管桩进行施工?

下面是中达咨询给大家带来关于管桩的应用和研究现状分析,以供参考。

管桩作为一种新桩型以其施工方便、承载力高、质量可靠、较为经济等优点越来越得到广泛的应用。管桩的承载力特性和受力状况,分析了影响管桩承载力的以以以及提高管桩承载力的,并基于对施工中常见问题的探究,提出有效的防治措施。

1前言

管桩作为一种地基处理以以及桩基础形式从上个世纪初产生到现在已经得到了很大的发展,在各种建筑基础中得到广泛地应用,并发挥着巨大的作用。从国外管桩的发展来看,从1920年澳大利亚发明了离心法混凝土制品、1925年日本引进这种技术用于钢筋混凝土管桩,在1962年开发预应力混凝土管桩(PC管桩),到现在已有十年的历史,目前管桩已朝着全面取代传统实心桩方向发展。我国是1944年开始生产混凝土离心(RC)管桩,到SO年代末期研究成功预应力抽筋管桩,即采用后张法对桩身混凝土施加预应力。近15年,我国生产的预应力混凝土管桩无论从产品性能和产量上都达到了世界前列,呈现出布局面广,产品品种、规格齐全,生产技术成熟,配套应用技术日趋完善等特点。据资料反映,2004年福建省实际利用预制高强混凝土管桩就达2500万米。为了更合理利用管桩这一技术、有效地推广使用管桩,对管桩进行研究是极为必要的。

管桩的种类分为:钢管桩、预制混凝土管桩以以及钢管混凝土管桩。钢管桩以以及钢管混凝土管桩具有高强度、抗冲击疲劳性能好、贯入能力强、便于割接、质量可靠、运输方便、沉桩速度快以以及挤土影响小等优点,但造价高,约为预应力混凝土管桩的3-10倍。一般只在必须穿越砂层或其它桩型无法施工和质量难以保证、或工期紧迫等情况下使用,或者是一些重要的特种工程的基础上,如海上钻井平台,港口平台等工程中使用。

预制混凝土管桩之所以得到迅速发展和广泛的应用,主要是由于具有优点:

(a)施工工期短,施工方便、不受季节限制,工业化生产:

(b)对施工场地无污染,若采用静压式施工更无噪音,符合绿色环保施工要求;

(c)经济效益可观,同样的地基处理效果(竖向承载力以以及水平承载力)所使用的混凝土比实心桩节省30%-60%且抗腐蚀能力强,工作性能同钢管桩基本相似。

(d)对持力层起伏变化较大的地质条件适应性强,软土、粘性土、粉土、砂土以以及全风化岩体等地层条件均可采用。像高层建筑、码头工程、桥梁工程、高速公路、铁道工程等除必须采用钢管桩的特殊基础外,在工程中钢管桩已大部分被预制混凝土管桩所代替。现在我国预制混凝土管桩使用量已经相当可观。

2管桩的承载特性以以及承载力分析

2.1管桩的承载特性

管桩的底桩端部的桩尖(靴)形式主要有十字型、圆锥型和开口型。前两种属于封口型。采用封口型桩尖的管桩其承载力主要由桩周的侧摩阻力以以及桩端的端阻力组成;采用开口型桩靴的管桩则在沉桩过程中桩身下部1/3-1/2桩长的内腔被土体充塞,挤土效应较弱(与沉管桩、静压实心混凝土桩比),对周围建筑物以以及环境影响小,具有较高的环保性能。但是内腔土塞却为管桩提供了内侧摩阻力,使得管桩的承载力的组成变得更为复杂。影响管桩承载特性的很多,桩侧土性、桩端土性、桩径、开口管桩的壁厚、人土深度、施工顺序等。预制混凝土管桩一般来说只具备开口桩的功效。

2.2管桩的受力分析

2.2.1管桩的竖向承载性状和单桩极限承载力确定管桩竖向承载力的很多,最可靠的是静力载荷试验法,目前比较常用的公式有两类:一是以土的物理力学指标和大量的试桩资料为依据,经统计分析建立桩侧和桩端阻力与土类指标之间的关系;另一类是以土的力学性能指标如土的标准贯入击数为依据,我国、欧洲以以及美国API-RP2A的地基基础规范均采用类公式。

由于各地地质条件不同,地质结构比较复杂,桩的类型又多,沉桩工艺也多种多样,很难用单一形式的公式来反映工程实际。

从文献进行的破坏荷载试验得知,当桩顶竖向受压时,桩身上部产生垂直应力和弹性变形,并向桩身下部传递,自上而下逐步建立摩阻力,桩身处于弹性压缩阶段。当荷载较小时,变形量较小,桩基基本没有发生位移,桩端阻力为零。随荷载增加,当垂直应力传递到桩端时,桩端土逐步压缩,桩土相对变形加大,桩侧摩阻力进~步发挥。在加荷载最后阶段,随着桩端阻力的不断增加,桩顶部位侧阻力达到极限(摩阻力趋于定值),并向下逐步扩大极限阻力的分布范围,在此过程中相荷载增量,作为抗力的摩阻力增量所占比例愈来愈小,而桩端阻力增量所占的比例则愈来愈大。最终导致桩端土出现塑性区并迅速扩展。桩因急剧下沉而失效,桩端土的刺入破坏先于桩身强度破坏。此时桩所承受的荷载就是桩的极限承载力。

2.2.2管桩的水平承载性状和单桩极限承载力

随着我国工程技术的迅速发展,大陆架浅海石油的勘探和开发技术的进步以以以及陆上高层建筑的发展,使得这些管桩不仅要承受巨大的竖向载荷,还要承受巨大的水平载荷。而桩在侧向载荷作用分析是工程中非常重要但却尚未圆满解决的问题。文献采用卧式千斤顶施加水平力试验来测定单桩水平载荷,施加的水平荷载分级一般取预估水平极限荷载的1/10-1/15,每级荷载施加-后,恒载4min测桩的水平位移值,然后卸载至零,停2min测出桩的残余水平位移值,至此完成一个加卸载循环,如此循环5次便完成一级荷载的试验观测。多级加荷后,出现下列情况之一时可停止试验:1)桩身折断;2)水平位移超过40mm或达到设计要求的水平位移允许值。当桩身应力达到极限强度时的桩顶水平力使桩顶水平位移超过20-30mm,或桩侧土体破坏的前一级水平荷载,即是单桩水平极限承载力标准值。

2.2.3影响管桩承载力的

2.2.3.1偏斜

偏斜桩是指随着桩周土的水平运动,桩与土之间产生的水平压力导致桩身产生水平挠曲和弯矩,致使桩偏斜的被动桩。预应力管桩偏斜后,其极限承载力要低于铅直桩的极限承载力。偏斜预应力管桩的承载力减少程度不仅与其偏斜的程度有关,且与其所处的土层性质、入土桩长、桩与承台布置等均有的关系。

当遇到超过偏斜值的桩时,无论其是否发生裂缝,均应进行纠偏扶正处理,将其倾斜度控制在允许的范围内。较浅的(一般2-3m)可以将桩倾斜反向土方挖除后扶正;较深的可以用钻孔取土、高压水冲取土等方式将桩倾斜反向一侧土取出后扶正。然后对纠偏扶正的桩进行检测,看其是否在纠偏施工中发生异常情况,如无异常可进行下步施工。

2.2.3.2裂缝

浅部裂缝——一般裂缝位置多发生在深度4-6m,也有的在3m以内,出现这种情况多数是桩裂缝部位的下部有相对比较坚硬的土层。深部裂缝一裂缝位置发生在8-10m,出现此种情况多是地基土上部软土层较厚。裂缝的存在势必影响到桩基竖向性受荷特性,为确保桩基工程的安全使用,需对桩基进行加固处理。如接桩、补桩,情况下还需经计算确定。

2.2.3.3偏心载

竖向荷载的偏心是预应力混凝土管桩产生弯曲荷载的重要原因,荷载的偏心也势必影响桩的竖向承载力。预应力混凝土管桩基础常采用柱下多桩承台,严格地讲,承台下大多数桩都处于偏心承载状态,偏心承载桩如何对桩的承载能力做出正确的评估,桩在正常使用极限状态下所能承受的偏心距临界值是多少,竖向荷载偏心距与桩的承载能力有何关系,这是预应力混凝土管桩基础设计要特别考虑的问题。

文献材料力学原理和现行钢筋混凝土结构设计规范的规定,提出预应力混凝土管桩在偏心荷载(或在桩顶水平位移)作用下内力与位移的计算,包括纯弯状态下桩身抗裂弯矩临界值;在轴心力和弯矩共同作用下桩身抗裂弯矩的极限值;桩顶允许承载力与竖向力偏心距(或桩顶水平位移)之间的相互关系式等。

3管桩设计施工中的问题以以及质量控制

3.1挤土效应

在沉桩过程中,土体向四周排挤,使周围的土受到严重的扰动,主要表现为径向位移,桩尖和桩周范围内的土体受到不排水剪切以以以及很大的水平挤压,产生较大的剪切变形,形成具有很高孔隙水压力的扰动重塑区,降低了土的不排水抗剪强度,促使桩周邻近土体会因不排水剪切而破坏,由于群桩施工中的迭加作用,会使已打入桩和邻近管线产生较大侧向位移和上浮。桩群越密越大,土的位移也越大。

施工遇到挤土效应采取的防治措施是:

①合理安排沉桩顺序、控制每日打桩的数量,减少孔隙水压力的迭加:

②采用先开挖基坑后沉桩的施工工序,可减少地基浅层软土的侧向位移和隆起,有利于降低沉桩所引起的超静孔隙水压力,从而减少地基深层土体变位。

③在场地设置袋装砂井或塑料排水板,创造排水条件以降低孔隙水压力。

④预钻孔辅助沉桩。

3.2浮桩

浮桩现象是静压管桩挤土效应的一种表现形式。该问题表现得很隐蔽,并且往往是等到压桩工程完工后做静载检测时才发现,而此时桩机可能已退场。此时再来处理就非常被动。比较好的处理措施是:提前选取有代表性的桩进行测量监控,在桩施工结束后应立即用水准仪测量记录其桩顶标高,并在整个施工过程中定期复测,通过比较来检查桩身是否有上浮现象。发现有上浮现象,则需采取前面提过的控制压桩速率、重新调整压桩路线或钻孔取土等措施,减少挤土效应进而控制桩身上浮现象。采取上述措施后仍不能解决桩身上浮现象,则可采用复压的补救进行处理。

3.3沉桩达不到设计要求

沉桩达不到设计的最终控制要求主要原因是:①勘探点不够或勘探资料粗糙,对工程地质情况不明,对持力层起伏标高不明,导致设计考虑持力层或挑选桩长有误。②设计持力层挑选不当,预应力管桩持力层宜挑选强风化层,以达到较高承载力。但当强风化层埋深较深时,考虑到桩长限制,不得已挑选全风化层作持力层时,承载力将受较大影响,特别是全风化层有遇水易软化特点,地下水可能通过桩管内从桩尖渗入,大大降低桩端承载力。③设计对单桩承载力预估不准,导致实际桩长与压桩力不匹配。④桩身断裂致使不能继续施压。

防治措施为详细探明工程地址地质情况,必要时应作补勘,正确挑选持力层或标高;施工采用合适吨位桩机;工程地质条件,合理挑选桩的施工以以及打桩顺序,避免断桩,确保桩身质量。科学设计,通过试桩确定合理终压标准。

3.4断桩

断桩是预制混凝土管桩施工中常常遇到的问题,其产生的主要原因主要有:①使用了厂家生产的未经检验的不合格的桩;②桩尖碰到地下障碍物管桩被蹩断:③管桩施工中垂直度没有控制好;④管桩由软弱土层突然进入硬土层,桩机压力迅速升高,桩身受到瞬间冲击力而引起;⑤基坑施工中,由于软土推挤隆起,基坑壁侧向移动造成断桩。

施工中若发现有断桩,就要采取补强加固方案处理。对预应力管桩浅层断桩可采用接桩。对深层断桩的接桩(包括部分错位桩纠偏后接头)要抽干桩内积水,确认桩的倾斜在允许范围内,放人钢筋笼,钢筋笼应伸到断桩下3m,用高等级混凝土灌注。接桩后要进行承载力检测。当断桩处错位,无法复原时,应重新补桩。对工程事故应分析问题的原因、补桩的可能性和对已施工桩的影响,考虑其它可利用条件以以以及经济和工期等要求。

4结语

管桩作为一种新桩型以其桩身质量可靠、承载力高、施工速度快、现场整洁、较为经济等优点越来越得到广泛的应用。但由于管桩的应用时间不长,在研究和应用等方面都还存在着不少亟待解决的问题。而工程实践的发展已远远超过理论研究水平,使得管桩的应用受到严重制约。总结了管桩的承载力特性和受力分析、影响管桩承载力的以以以及提高管桩承载力的、施工中常见问题以以以及防治措施。但文中所涉以以及到的诸多问题目前都还没有得到圆满的解决,还需要通过大量的科学研究和工程实践来做进一步探究。

更多关于工程/服务/采购类的标书代写,提升中标率,您可以点击底部官网免费咨询:/#/?source=bdzd

钢管桩和贝雷梁组合支架在跨河现浇梁施工中的应用?

a、钢管桩运输、堆放

将由专业厂家加工的10米-20米长的Φ50cm的钢管桩,直接用船运至工地即可,现场施工进度组织分批运送至工地,避免钢管桩压船。钢管桩运输过程堆放按沉桩顺序可采用多层叠放,各层垫木位于同一垂直面上,船上管桩的叠放层数不易超过三层,以保证行船安全。钢管桩起吊、运输和堆存过程中须避免因碰撞等原因而造成管身变形的损伤。注意在钢管桩沉放前再次检查管节焊缝。

b、钢管桩沉放

沉放前先计算出每条钢管桩的坐标,在两岸大堤上针对各桩分别布置一条基线,基线上的每一个观测点用全站仪精确测量其坐标位置,并用水准仪测出其高程;然后计算出每一根桩上观测点的坐标以以及交会角,并汇总成表供观测沉桩使用。沉放时在正面布置一台全站仪观测定位,侧面设置两台经纬仪校核。

钢管桩沉放使用45KW振动锤,能提供额定振动力为45t,可使其能够满足本工程的要求。起吊设备采用30t起重船。起重船抛锚定位后,先期依靠钢管桩重力插入覆盖层中,上部用缆绳绑在吊船边,待桩身有稳定性后,再利用浮吊吊上振动沉桩机夹住钢管桩,开始振动沉桩机振动下沉钢管桩到位。钢管桩逐排沉放,一排桩沉放完成后再移船至另一侧。

钢管桩沉放应注意:振动锤中心和桩中心轴应尽量保持在同一直线上;每一根桩的下沉应连续,不可中途停顿过久,以免土的摩阻力恢复,继续下沉困难。沉放过程加强观测,钢管桩偏位不得大于10厘米,垂直度不得低于0.1%。

c、钢平台搭设

钢管桩沉放完毕后,开始进行钻孔平台型钢布设,其具体步骤如下:

各钢管桩在顺水流向适当位置开口,割平钢管桩头安装已拼接好的I45工字钢横梁,与钢管桩(开口)壁点焊→浇注各钢管桩桩头C15砼,使I45横梁嵌固在桩头中→安装I36工字钢分配纵梁,并与I45横梁焊接(设加劲板)→在“井”字梁上铺设δ=10mm厚钢板,加设安全栏杆。

平台施工开始时即设置航标,悬挂夜间红灯示警等通航导向标志,并打设钢管桩防撞墩,以策安全。

钢管桩和贝雷梁组合支架在跨河现浇梁施工中的应用是怎样的呢,下面中达咨询招投标老师为你解答以供参考。

工程概况永定新河特大桥主桥跨越永定新河与引河,每跨采用 40 m 钢筋混凝土预应力简支箱梁。桥位处的永定新河宽 128 m,深 4.0 m;引河宽 100 m,深 1.5 m,两河中间还有一条宽 12 m 的污水河。施工范围地势低洼、河床开阔、河谷宽缓、河水流速较慢、河底以以及沿岸有较厚的淤泥。为满足工期要求,永定新河南岸以以及跨污水河、引河段的 8 孔简支梁采用支架现浇法施工。针对该段地基软,大部分桥墩位于河流内,地质条件较差的工程实际,采用了以 准630 mm 钢管桩作地基处理,上部架设贝雷梁作为支架的方案。以 490#~491# 墩为例支架的设计施工以以及预拱度控制。方案设计490#~491# 墩需跨越永定新河约 11 m 的河床,其中 490# 墩在永定新河河床内;491# 墩位于永定新河与引河间的河谷内。因永定新河是泄洪河,简支梁施工时又正值汛期,不能采用回填土方搭设支架法施工。为保证河道畅通,满足其泄洪要求,最终选定以两跨贝雷梁跨越河流的方案。贝雷梁基础由 3 排钢管桩组成,后考虑到 491# 墩周围约 18 m 范围内地基条件较好,经换填灰土压实后即可满足地基要求的特点,为节省造价,采用混凝土条形基础代替其中一排钢管桩。见图 1。每排钢管桩由 9 根 准630 mm,壁厚 10 mm 的钢管组成,桩顶露出水面 1 m 。如钢管桩露出水(地)面超过 2 m,钢管桩之间应采用横撑和斜撑相联。混凝土箱梁荷载特点,钢管桩间距不等距对称布置。混凝土条形基础长 18 m,宽 2 m,为钢筋混凝土结构。钢管桩以以及条形基础施工完毕后,在其上架设组装好的贝雷梁,贝雷梁顶等距铺设Ⅰ20 工字钢后搭设碗扣件支架。贝雷梁顶与灰土段满堂支架应连接牢固,形成整体。见图 2。地基处理钢管桩施工第 1 排钢管桩靠近 490# 墩设置,其中 7 根施打至该墩承台以以及加台顶,以其为地基承载。第 2 排钢管桩在距 490# 墩 13 m 处,打入深度为 15 m,以钢板桩机或吊车悬吊振动锤打入。插打时严格控制钢管桩定位和垂直度,发现偏差以以及时纠正。在打到 15 m 后持荷 10 min,直到钢管桩不再下沉方可撤锤。钢管桩成桩后倾斜度≯0.5%H,桩位偏移≯5 cm,高程偏差≯2 cm。插打完成后进行支撑连接施工。支撑分为横撑和斜撑,均与钢管桩连接,连接方式采用 506 焊条焊接,通长满焊。横撑与斜撑可各设置一道,横撑设置在常水位(地面) 30 cm 处,两钢管桩之间;斜撑设置呈 X形状,上端设置在桩顶下 20 cm 处,下端设置在横撑处。如钢管桩露出水(地)面 0.5~2.0 m,可视情况只设一道横撑。横向系梁施工每排钢管桩顶端采用 2 道Ⅰ40 工字钢做为横向系梁,2 道工字钢用 10 cm-20 cm-1 cm 钢板连接。施工时用吊车两点起吊法将横向系梁吊至钢管桩顶固定焊接。在墩柱未打钢管桩侧紧贴墩柱加设Ⅰ40 工字钢一道并与系梁采用拉杆相连。拉杆共 3 根,分别设在墩柱中间凹槽部位以以及两端。其中凹槽部位拉杆为 准20 mm钢筋,穿入浇注墩柱时固定模板用的拉杆孔内。横向两侧拉杆为精轧 准25 mm 钢筋。混凝土条形基础施工条形基础位于距 490# 墩 26 m 处,长 18 m,宽 2.0m,深 0.6 m,为钢筋混凝土结构,基础顶面与钢管桩顶工字钢系梁平齐。满堂支架地基处理先清除支架范围内的树木、杂草等障碍物,如原地表土质较好,可将原土平整、压实后,填筑 40 cm 厚 10%灰土;如原地表土质较差,不能直接做基础,应换填 100cm 厚 10%灰土和 50 cm 厚山皮土。填筑时分层填筑、压实,每层压实厚度不少于 20cm,压实度<93%。碾压稳定后,观察无辙痕、无沉降,再通过试验进行检测合格方可搭设支架。处理后的地基高出原地面≮20 cm 并做成≮2%的双面拱坡。支架地基达到设计承载力要求后,在四周挖排水沟,做好排水系统,防止雨水浸泡地基。支架搭设纵向主梁施工在钢管桩横向系梁以以及混凝土条形基础上架设 7 片贝雷梁作为纵向主梁,贝雷梁需提前拼装,在桩位间连续设置形成连续梁。贝雷梁横向间距不等距对称布置,跨中间距最小,两端间距。贝雷梁拼装时必须拧紧螺丝,销子均上卡扣。为保证受力均匀、变形一致,贝雷梁与条形基础必须紧密接触,如中间有缝隙需加钢板调整。铺设工字钢由于贝雷梁间距较大,就位后需在梁顶横向铺设一层 18 m 长Ⅰ20 工字钢,间距 60 cm,替代搭设支架用的底层方木。工字钢与贝雷梁用 U 形卡连接,U 形卡呈梅花形布置且必须保证每根工字钢上均有不少于 3个 U 形卡。工字钢接头间隔布置,相互错开,不允许在同一截面内。如工字钢接头没有搭在贝雷梁的上弦杆上,必须用钢板将两工字钢焊接牢固。碗扣件支架搭设在已换填压实好的地基上先铺设 20 cm-20 cm 枕木,箱梁底轮廓线 7.2 m 范围内,横向满铺,翼缘板处可间隔 10 cm 设置,枕木上方纵向通长铺设 15 cm-15 cm方木。支架间距分别为:(1)横向中间部分箱梁,梁底轮廓线 7.2 m 范围内,立杆按纵向步距 60 cm、横向步距 60 cm,水平横杆高60 cm 设置;(2)横向翼缘板部分,横向两侧各 4.5 m 范围内立杆纵向步距 60 cm,横向步距 90 cm,水平横杆高 120cm 设置;在箱梁纵向梁端 3.6 m 范围内按水平横杆高60 cm 设置。支架搭设宽度与贝雷梁梁面宽度相同,均要超出梁顶设计宽度两侧各 1~2 m 作为施工工作平台。为加强支架整体稳定性,按桥梁轴线纵横方向设置剪刀撑,剪刀撑左右上下连通并从底面到梁底连续设置。横向剪刀撑沿纵向每 5 m 一道;纵向剪刀撑共设置 5 道,支架外侧以以及腹板梁正下各两道,底板梁中心线一道。剪刀撑与相连支架横杆、立杆的交点,均以扣件连接固定。在碗扣支架上下方设置可调节上下托,下托直接坐于通长铺设的 15 cm-15 cm 方木上。为保证碗扣件支架顶部稳定性,碗扣支架立杆上部自由高度≯60cm,超出必须增加一步横杆。碗扣支架搭设时应保证纵横成线,纵横向杆件用扣碗扣紧,不移动,形成牢固的纵、横、竖三维网架。顶层方木纵向为 15 cm-15 cm 通长铺设,间距 60cm;横向为 10 cm-10 cm 方木,间距 25 cm。支架等载预压以以及预拱度的设置箱梁支架搭设完毕、梁模安装好后,对支架进行等载预压。预压的目的一是消除支架以以及地基的非弹性变形,二是得到支架的弹性变形值作为施工预留拱度的依据。等载预压即预压重量为箱梁混凝土自重、内外模板框架重量以以及施工荷载之和,为简便计算可以取箱梁混凝土自重的 120%。本工程地处永定新河,给排水方便,使用水袋注水加荷,三级加载的进行预压。水袋铺设前先在安装完成的梁模内铺设一层砂袋,在砂袋筑成的空间内铺水袋,形成水槽注水加载。第 1 级加载 0~50%,第 2 级加载 50%~80%,第 3 级加载 80%~120%。每次加载完后均需进行沉降观测,之后再进行下一级加载。第 3 级加载完 4、12、24 h 后再分别观测一次。利用最后一次观测的数据和预压前观测数据对比得出支架以以及基础的沉降量。测点布设。每跨纵桥向间隔 8 m 设 1 个断面,每断面设 10 个测点,上下各 5个,上部 5 个测点分别设在两侧翼缘板各 1 个、两腹板处各 1 个,梁中心线底板处 1个;下部 5 个测点分别设在对应上部 5 个的水平投影位置左右并且在枕木上。对各测量点要进行编号,以利于对比分析。卸载过程是加载的逆过程,同样分 3 个步骤。前两次卸载完后立即进行沉降观测并于 0.5 h 后再观测一次。第 3 次卸载完后立即进行沉降观测并于 2 h 后再观测一次。要均匀依次卸载,防止突然释荷的冲击并妥善放置重物以免影响正常施工。分阶段卸载时再对各点进行测量,得出支架卸载后的回弹量。两次测量值比较,得出弹性变形值。支架标高调整。架体预压前,支架按照设计标高调整,确保支架各杆件均匀受力。预压后架体基本消除预压荷载作用下基础塑性变形和支架各竖向杆件的间隙等非弹性变形。通过预压加载前后挠度测量数据分析,该支架在试压荷载卸荷后的塑性变形为 5 mm 左右,跨中的弹性变形为 45 mm。考虑 5 mm 的塑形变形,故40 m 跨跨中底模预拱度为 50 mm,其他位置的预拱按二次抛物线布设,但在灰土段以以及贝雷梁段需视具体情况取不同的系数。

更多关于工程/服务/采购类的标书代写,提升中标率,您可以点击底部官网免费咨询:/#/?source=bdzd

今天关于“钢管桩可以重复利用吗”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

Processed in 1.089796 Second , 93 querys.